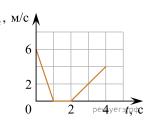
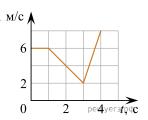
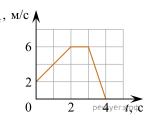

1. Материальная точка массой m = 2,5 кг движется вдоль оси Ox. График зависимости проекции скорости v_x материальной точки на эту ось от времени t представлен на рисунке. В момент v_x , м/с времени t = 4 с модуль результирующей всех сил F, приложенных к материальной точке, равен ... **H**.


2. Материальная точка массой m=3 кг движется вдоль оси Ox. График зависимости проекции скорости υ_x материальной точки на эту ось от времени t представлен на рисунке. В момент υ_x , м/с времени t=3 с модуль результирующей всех сил F, приложенных к материальной точке, равен ... H.


3. Материальная точка массой m=2,5 кг движется вдоль оси Ox. График зависимости проекции скорости v_x материальной точки на эту ось от времени t представлен на рисунке. В момент времени t=3 с модуль результирующей всех сил F, приложенных к материальной точке, равен ... **H**.


4. Материальная точка массой m=2,0 кг движется вдоль оси Ox. График зависимости проекции скорости v_x материальной точки на эту ось от времени t представлен на рисунке. В момент времени t=3 с модуль результирующей всех сил F, приложенных к материальной точке, равен ... **H**.

5. Материальная точка массой m = 2,0 кг движется вдоль оси Ox. График зависимости проекции скорости v_x материальной точки на эту ось от времени t представлен на рисунке. В момент v_x , м/с времени t = 2 с модуль результирующей всех сил F, приложенных к материальной точке, равен ... **H**.

6. Материальная точка массой m = 1,5 кг движется вдоль оси Ox. График зависимости проекции скорости v_x материальной точки на эту ось от времени t представлен на рисунке. В момент v_x времени $v_x = 1$ с модуль результирующей всех сил $v_x = 1$ приложенных к материальной точке, равен ... $v_x = 1$ н.

- 7. Телу, находящемуся на гладкой наклонной плоскости, образующей угол $\alpha = 60^{\circ}$ с горизонтом, ударом сообщили начальную скорость, направленную вверх вдоль плоскости. Если время, через которое тело вернётся в начальное положение, t = 3,7 с, то чему равен модуль начальной скорости тела равен? Ответ приведите в метрах в секунду.
- **8.** Телу, находящемуся на гладкой наклонной плоскости, образующей угол $\alpha = 60^{\circ}$ с горизонтом, ударом сообщили начальную скорость, направленную вверх вдоль плоскости. Если модуль начальной скорости $v_0 = 48$ м/с, то время t, через которое тело вернется в начальное положение, равно? Ответ приведите в секундах.

9. На материальную точку массой m = 0.50 кг действуют две силы, модули которых $F_1 = 4.0$ H и $F_2 = 3.0$ H, направленные под углом $\alpha = 90^{\circ}$ друг к другу. Модуль ускорения a этой точки равен:

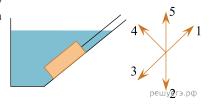
1) $2,0 \text{ m/c}^2$

2) 5.0 m/c^2

3) 8.5 m/c^2 4) 10 m/c^2 5) 14 m/c^2

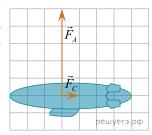
10. Тело движется вдоль оси Ox под действием силы \vec{F} . Кинематический закон движения тела имеет вид: $x(t) = A + Bt + Ct^2$, где A = 5.0 м, B = 2.0 м/с, C = 2.0 м/с². Если масса тела m = 2.0 кг, то в момент времен t = 2.0 с мгновенная мощность P силы равна ...

11. Тело движется вдоль оси Ox под действием силы \vec{F} . Кинематический закон движения тела имеет вид: $x(t) = A + Bt + Ct^2$, где A = 7.0 м. B = 4.0 м/с. C = 1.0 м/с². Если масса тела m = 4.0 кг. то в момент времен t = 3.0 с мгновенная мошность P силы равна

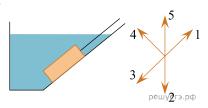

12. Тело движется вдоль оси Ox под действием силы \vec{F} . Кинематический закон движения тела имеет вид: $x(t) = A + Bt + Ct^2$, где A = 4,0 м, B = 5,0 м/с , C = 1,0 м/с². Если масса тела m = 2,0 кг, то в момент времен t = 5,0 с мгновенная мощность P силы равна ... **Вт**.

13. Тело движется вдоль оси Ox под действием силы \vec{F} . Кинематический закон движения тела имеет вид: $x(t) = A + Bt + Ct^2$, где A = 6.0 м, B = 8.0 м/с , C = 2.0 м/с². Если масса тела m = 1.1 кг, то в момент времен t = 3.0 с мгновенная мощность P силы равна ... BT.

14. Тело движется вдоль оси Ox под действием силы \vec{F} . Кинематический закон движения тела имеет вид: $x(t) = A + Bt + Ct^2$, где A = 1,0 м, B = 2,0 м/с , C = 1,0 м/с². Если масса тела m = 2,0 кг, то в момент времен t = 4,0 с мгновенная мощность P силы равна ...

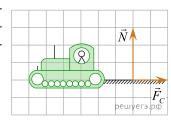

15. Тело движется вдоль оси Ox под действием силы \vec{F} . Кинематический закон движения тела имеет вид: $x(t) = A + Bt + Ct^2$, где A = 6.0 м, B = 4.0 м/с, C = 1.0 м/с². Если масса тела m = 1.0 кг, то в момент времен t = 3.0 с мгновенная мощность P силы равна ...

16. На дно водоёма с помощью троса равномерно опускают каменную плиту (см. рис.). Направление нормальной составляющей силы реакции грунта, действующей на плиту, показано стрелкой, обозначенной цифрой:

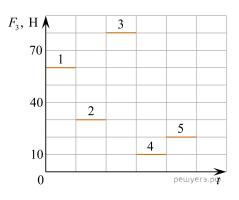


1) 1 2) 2 3)3 4) 4 5)5

17. Дирижабль летит в горизонтальном направлении с постоянной скоростью. На рисунке изображены сила Архимеда $\vec{F}_{\rm A}$ и сила сопротивления воздуха $\vec{F}_{\rm c}$, действующие на дирижабль. Если сила тяги $\vec{F}_{\rm T}$ двигателей дирижабля направлена горизонтально, а модуль этой силы $\vec{F}_{\rm T}=10~{\rm kH},$ то масса т дирижабля равна ... т.

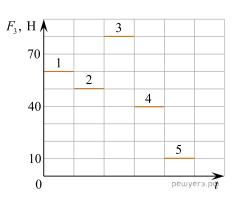


18. Со дна водоёма с помощью троса равномерно поднимают каменную плиту (см. рис.). Направление силы тяжести, действующей на плиту, показано стрелкой, обозначенной цифрой:

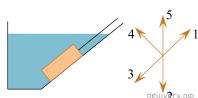


1) 1 5) 5 2) 2 3)3

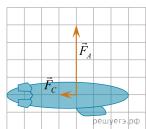
19. При боронировании горизонтального участка поля трактор движется с постоянной скоростью. На рисунке изображены нормальная составляющая силы реакции \vec{N} грунта и сила сопротивления движению, действующие на борону. Если сила \vec{F} , с которой трактор тянет борону направлена горизонтально, а модуль этой силы $\vec{F}=400~{\rm H}$, то масса m бороны равна ... кг.



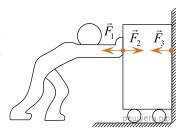
20. Тело двигалось в пространстве под действием трёх постоянных по направлению сил \vec{F}_1 , \vec{F}_2 , \vec{F}_3 . Модуль первой силы $F_1=20$ H, второй — $F_2=55$ H. Модуль третьей силы F_3 на разных участках пути изменялся со временем так, как показано на графике. Если известно, что только на одном участке тело двигалось равномерно, то на графике этот участок обозначен цифрой:


1) 1 2) 2 3) 3 4) 4 5) 3

21. Тело двигалось в пространстве под действием трёх постоянных по направлению сил \vec{F}_1 , \vec{F}_2 , \vec{F}_3 . Модуль первой силы $F_1=30$ H, второй — $F_2=15$ H. Модуль третьей силы F_3 на разных участках пути изменялся со временем так, как показано на графике. Если известно, что только на одном участке тело двигалось равномерно, то на графике этот участок обозначен цифрой:


1) 1 2) 2 3) 3 4) 4 5) 5

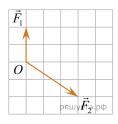
22. На дно водоёма с помощью троса равномерно опускают каменную плиту (см. рис.). Направление силы трения скольжения, действующей на плиту, показано стрелкой, обозначенной цифрой:



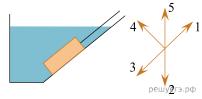
1) 1 2) 2 3) 3 4) 4 5) 5

23. Дирижабль массой m=8 т летит в горизонтальном направлении с постоянной скоростью. На рисунке изображены сила Архимеда \vec{F}_A и сила сопротивления воздуха $\vec{F}_{\rm C}$, действующие на дирижабль. Если сила тяги $\vec{F}_{\rm T}$ двигателей дирижабля направлена горизонтально, то модуль этой силы равен ... $\kappa {\bf H}$.

24. Человек толкает контейнер, который упирается в вертикальную стену (см.рис.). На рисунке показаны F_1 —сила, с которой контейнер действует на человека; F_2 — сила, с которой человек действует на контейнер; F_3 — сила, с которой стена действует на контейнер. Какое из предложенных выражений в данном случае является математической записью третьего закона Ньютона?



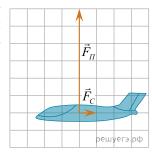
2)
$$\vec{F}_1 = \vec{F}_3$$


4)
$$\vec{F}_2 = -\vec{F}_3$$

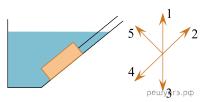
1)
$$\vec{F}_1 = -\vec{F}_2$$
 2) $\vec{F}_1 = \vec{F}_3$ 3) $\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 0$ 4) $\vec{F}_2 = -\vec{F}_3$ 5) $\vec{F}_1 - \vec{F}_2 + \vec{F}_3 = 0$

25. На покоящуюся материальную точку O начинают действовать две силы \vec{F}_1 и \vec{F}_2 (см. рис.), причём модуль первой силы $F_1 = 6$ H. Материальная точка останется в состоянии покоя, если к ней приложить третью силу, модуль которой F_3 равен ... **H**.

26. Из водоема с помощью троса поднимают каменную плиту (см.рис.). Направление силы трения скольжения, действующей на плиту, показано стрелкой, обозначенной цифрой:


1) 1 2) 2

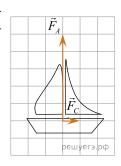
3)3


4) 4

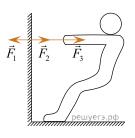
5) 5

27. Самолет летит в горизонтальном направлении с постоянной скоростью. На рисунке изображены подъемная сила $\vec{F}_{
m I}$ и сила сопротивления воздуха $\vec{F}_{
m c}$, действующие на самолет. Если сила тяги $ec{F}_{ ext{ iny T}}$ двигателей самолета направлена горизонтально, а модуль этой силы $ec{F}_{ ext{ iny T}}=70\,\, ext{kH},$ то масса \emph{m} самолета равна ... т.

28. На дно водоема с помощью троса равномерно опускают каменную плиту (см.рис.). Направление силы трения скольжения, действующей на плиту, показано стрелкой, обозначенной цифрой:



1) 1 2) 2 3)3


4) 4

5) 5

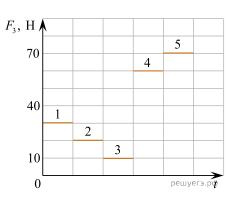
29. Яхта массой m = 6 т движется с постоянной скоростью при попутном ветре. На рисунке изображены сила Архимеда \vec{F}_A и сила сопротивления воздуха $\vec{F}_{\rm c}$, с которыми вода действует на яхту. Если ветер действует на яхту с силой $\vec{F}_{\rm B}$ направленной горизонтально, то модуль этой силы равен ... к ${\bf H}$.

30. Невесомую веревку, прикрепленную к стене, человек тянет в горизонтальном направлении (см.рис.). На рисунке показаны: \vec{F}_1 — сила, с которой стена действует на веревку; \vec{F}_2 — сила, с которой веревка действует на стену; \vec{F}_3 — сила, с которой человек действует на веревку. Какое соотношение между векторами сил F₁ и F₂?

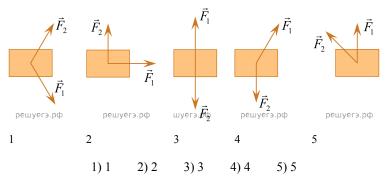
1)
$$\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 0$$

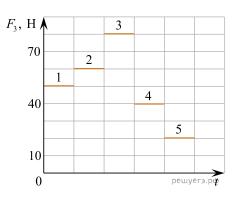
2)
$$\vec{F}_2 = \vec{F}_2$$

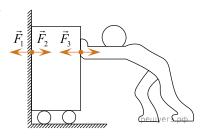
3)
$$\vec{F}_1 = -\vec{F}$$


1)
$$\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 0$$
 2) $\vec{F}_2 = \vec{F}_3$ 3) $\vec{F}_1 = -\vec{F}_3$ 4) $-\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 0$

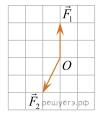
5)
$$\vec{F}_1 = -\vec{F}_2$$


31. На покоящуюся материальную точку O начинают действовать две силы \vec{F}_1 и \vec{F}_2 (см.рис.), причём модуль первой силы $F_1 = 2$ H. Материальная точка останется в состоянии покоя, если к ней приложить третью силу, модуль которой F_3 равен ... \mathbf{H} .

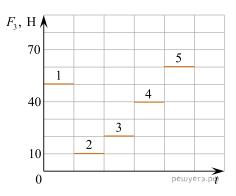

32. Тело двигалось в пространстве под действием трёх постоянных по направлению сил $\vec{F}_1, \ \vec{F}_2, \ \vec{F}_3$. Модуль первой силы F_1 = 15 H, второй — F_2 = 40 H. Модуль третьей силы F_3 на разных участках пути изменялся со временем так, как показано на графике. Если известно, что только на одном участке тело двигалось равномерно, то на графике этот участок обозначен цифрой:


- 1) 1 3)3 4) 4 5) 5 2) 2
- 33. К телу приложены силы \vec{F}_1 и \vec{F}_2 , лежащие в плоскости рисунка. Направления сил изменяются, но их модули остаются постоянными. Наибольшее ускорение а тело приобретет в ситуации, обозначенной на рисунке цифрой:

- 34. К бруску массой m = 0,50 кг, находящемуся на гладкой горизонтальной поверхности, прикреплена невесомая пружина жесткостью k = 25 Н/м. Свободный конец пружины тянут в горизонтальном направлении так, что длина пружины остается постоянной (l= 17 см). Если длина пружины в недеформированном состоянии $l_0 = 13$ см, то модуль ускорения бруска равен ... дм/ c^2 .
- 35. Тело двигалось в пространстве под действием трёх постоянных по направлению сил $\vec{F}_1, \ \vec{F}_2, \ \vec{F}_3$. Модуль первой силы $F_1 = 25 \ \mathrm{H},$ второй — $F_2 = 10 \ \mathrm{H}.$ Модуль третьей силы F_3 на разных участках пути изменялся со временем так, как показано на графике. Если известно, что только на одном участке тело двигалось равномерно, то на графике этот участок обозначен цифрой:

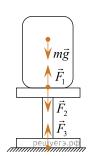


36. Человек толкает контейнер, который упирается в вертикальную стену (см.рис.). На рисунке показаны: \vec{F}_1 — сила, с которой контейнер действует на стену; \vec{F}_2 — сила, с которой стена действует на контейнер; \vec{F}_3 — сила, с которой человек действует на контейнер. Какое из предложенных выражений в данном случае является математической записью третьего закона Ньютона?

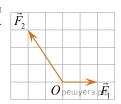


1)
$$\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 0$$
 2) $\vec{F}_2 = -\vec{F}_3$ 3) $\vec{F}_1 = \vec{F}_3$ 4) $\vec{F}_1 - \vec{F}_2 + \vec{F}_3 = 0$ 5) $\vec{F}_1 = -\vec{F}_2$

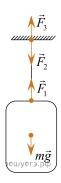
37. На покоящуюся материальную точку O начинают действовать две силы $\vec{F_1}$ и $\vec{F_2}$ (см.рис.), причём модуль первой силы $F_1=8$ Н. Материальная точка останется в состоянии покоя, если к ней приложить третью силу, модуль которой F_3 равен ... **H**.



38. Тело двигалось в пространстве под действием трёх постоянных по направлению сил $\vec{F}_1,\ \vec{F}_2,\ \vec{F}_3$. Модуль первой силы $F_1=10\ \mathrm{H},\ \mathrm{второй}\ -\!\!\!-F_2=35\ \mathrm{H}.$ Модуль третьей силы F_3 на разных участках пути изменялся со временем так, как показано на графике. Если известно, что только на одном участке тело двигалось равномерно, то на графике этот участок обозначен цифрой:


1) 1 2) 2 3) 3 4) 4 5) 5

39. На невесомой подставке, стоящей на полу лежит груз массой m (см.рис.). На рисунке показаны: $m\vec{g}$ – сила тяжести; \vec{F}_1 — сила, с которой подставка действует на груз; \vec{F}_2 — сила, с которой груз действует на подставку; \vec{F}_3 — сила, с которой пол действует на подставку. Какое из предложенных выражение в данном случае является математической записью третьего закона Ньютона?



1) $\vec{F}_1 = -m\vec{g}$ 2) $\vec{F}_2 = m\vec{g}$ 3) $\vec{F}_1 = -\vec{F}_2$ 4) $\vec{F}_2 = -\vec{F}_3$ 5) $\vec{F}_3 = -m\vec{g}$

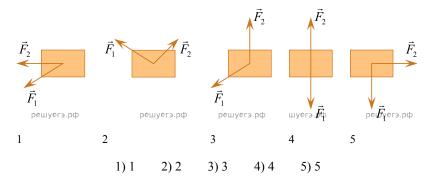
40. На покоящуюся материальную точку O начинают действовать две силы \vec{F}_1 и \vec{F}_2 (см.рис.), причём модуль первой силы F_1 = 4 H. Материальная точка останется в состоянии покоя, если к ней приложить третью силу, модуль которой F_3 равен ... **H**.

41. Груз массой m, подвешенный к потолку на невесомой нити, находится в состоянии покоя (см. рис.). На рисунке показаны: $m\vec{g}$ – сила тяжести; \vec{F}_1 – сила, с которой нить действует на груз; \vec{F}_2 – сила, с которой нить действует на потолок; \vec{F}_3 – сила, с которой потолок действует на нить. Какое из предложенных выражение в данном случае является математической записью третьего закона Ньютона?

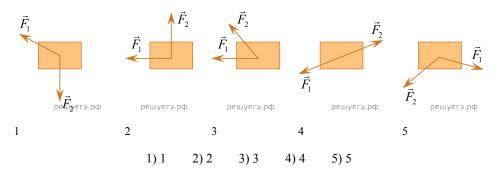
1)
$$\vec{F}_1 = -m\vec{g}$$

2)
$$\vec{F}_2 = m\vec{g}$$

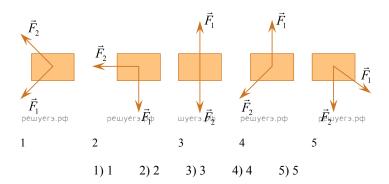
3)
$$\vec{F}_1 = -\vec{F}$$


4)
$$\vec{F}_2 = -\vec{F}_3$$

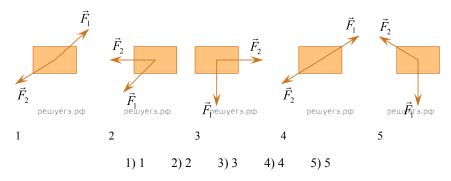
1)
$$\vec{F}_1 = -m\vec{g}$$
 2) $\vec{F}_2 = m\vec{g}$ 3) $\vec{F}_1 = -\vec{F}_2$ 4) $\vec{F}_2 = -\vec{F}_3$ 5) $\vec{F}_3 = -m\vec{g}$


42. На покоящуюся материальную точку O начинают действовать две силы \vec{F}_1 и \vec{F}_2 (см.рис.), причём модуль первой силы F_1 = 2 Н. Материальная точка останется в состоянии покоя, если к ней приложить третью силу, модуль которой F_3 равен ... \mathbf{H} .

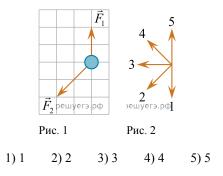
43. К телу приложены силы \vec{F}_1 и \vec{F}_2 , лежащие в плоскости рисунка. Направления сил изменяются, но их модули остаются постоянными. Наибольшее ускорение а тело приобретет в ситуации, обозначенной на рисунке цифрой:



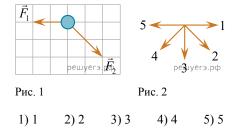
- **44.** К бруску массой m = 0,50 кг, находящемуся на гладкой горизонтальной поверхности, прикреплена невесомая пружина жесткостью k = 20 H/м. Свободный конец пружины тянут в горизонтальном направлении так, что длина пружины остается постоянной, а модуль ускорения бруска a = 2,4 м/с 2 . Если длина пружины в недеформированном состоянии $l_0 = 12$ см, то ее длина l при движении
- **45.** К телу приложены силы \vec{F}_1 и \vec{F}_2 , лежащие в плоскости рисунка. Направления сил изменяются, но их модули остаются постоянными. Наибольшее ускорение а тело приобретет в ситуации, обозначенной на рисунке цифрой:



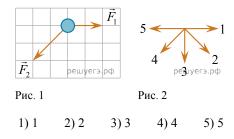
46. К бруску массой m = 0,64 кг, находящемуся на гладкой горизонтальной поверхности, прикреплена невесомая пружина жесткостью k = 40 Н/м. Свободный конец пружины тянут в горизонтальном направлении так, что длина пружины остается постоянной (l= 16 см). Если длина пружины в недеформированном состоянии $l_0 = 12$ см, то модуль ускорения бруска равен ... $\mathbf{\chi m/c^2}$.


47. К телу приложены силы $\vec{F_1}$ и $\vec{F_2}$, лежащие в плоскости рисунка. Направления сил изменяются, но их модули остаются постоянными. Наибольшее ускорение a тело приобретет в ситуации, обозначенной на рисунке цифрой:

- **48.** К бруску, находящемуся на гладкой горизонтальной поверхности, прикреплена невесомая пружина жесткостью k=20 Н/м. Свободный конец пружины тянут в горизонтальном направлении так, что длина пружины остается постоянной (l=140 мм). Если длина пружины в недеформированном состоянии $l_0=100$ мм, а модуль ускорения бруска a=1,25 м/с 2 , то масса m бруска равна ... г.
- **49.** К телу приложены силы \vec{F}_1 и \vec{F}_2 , лежащие в плоскости рисунка. Направления сил изменяются, но их модули остаются постоянными. Наибольшее ускорение a тело приобретет в ситуации, обозначенной на рисунке цифрой:

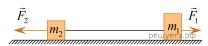


- **50.** К бруску массой m=0,64 кг, находящемуся на гладкой горизонтальной поверхности, прикреплена невесомая пружина. Свободный конец пружины тянут в горизонтальном направлении так, что длина пружины остается постоянной (l=15 см). Если длина пружины в недеформированном состоянии $l_0=11$ см, а модуль ускорения бруска a=3 м/с 2 , то жесткость k пружины равна ... **H/м**.
- **51.** К некоторому телу приложены силы $\overrightarrow{F_1}$ и $\overrightarrow{F_2}$, лежащие в плоскости рисунка (см. рис. 1). На рисунке 2 направление ускорения \overrightarrow{a} этого тела обозначено цифрой:



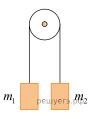
52. Кинематический закон движения тела вдоль оси Ox имеет вид $x(t) = A + Bt + Ct^2$, где A = 2.0 м, B = 3.0 м/с, C = 4.0 м/с². Если модуль результирующей всех сил, приложенных к телу, F = 320 H, то масса тела m равна ... кг.

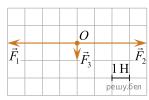
53. К некоторому телу приложены силы $\overrightarrow{F_1}$ и $\overrightarrow{F_2}$, лежащие в плоскости рисунка (см. рис. 1). На рисунке 2 направление ускорения \overrightarrow{d} этого тела обозначено цифрой:


- **54.** Кинематический закон движения тела вдоль оси Ox имеет вид $x(t) = A + Bt + Ct^2$, где A = 2,0 м, B = 1,0 м/с, C = -3,0 м/с². Если масса тела m = 2,0 кг, то модуль результирующей всех сил F, приложенных к телу, равен ... **H**.
- **55.** К некоторому телу приложены силы $\overrightarrow{F_1}$ и $\overrightarrow{F_2}$, лежащие в плоскости рисунка (см. рис. 1). На рисунке 2 направление ускорения \overrightarrow{d} этого тела обозначено цифрой:

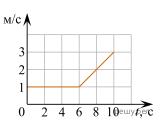
- **56.** Кинематический закон движения тела вдоль оси Ox имеет вид $x(t) = A + Bt + Ct^2$, где A = 4.0 м, B = 2.0 м/с, C = -0.8 м/с². Если модуль результирующей всех сил, приложенных к телу, F = 64 H, то масса тела m равна ... кг.
- **57.** Два груза массы $m_1=0.4$ кг и $m_2=0.2$ кг, находящиеся на гладкой горизонтальной поверхности, связаны легкой нерастяжимой нитью (см. рис.). Грузы приходят в движение под действием сил, модули которых зависят от времени по закону: $F_1=At$ и $F_2=2At$, где A=1.5 Н/с. Если модуль сил упругости нити в момент разрыва $F_{\rm ynp}=20$ Н, то нить разорвется в момент времени t от начала движения, равный ... ${\bf c}$.

58. Два груза массы $m_1=0.5$ кг и $m_2=0.3$ кг, находящиеся на гладкой горизонтальной поверхности, связаны легкой нерастяжимой нитью (см. рис.). Грузы приходят в движение под действием сил, модули которых зависят от времени по закону: $F_1=At$ и $F_2=2At$. Если нить разрывается в момент времени t=6 с от начала движения и модуль сил упругости нити в момент разрыва $F_{\rm ynp}=29$ H, то коэффициент пропорциональности A равен ... H/c. Ответ округлите до целых.


59. Два груза, находящиеся на гладкой горизонтальной поверхности, связаны легкой нерастяжимой нитью (см. рис.). Грузы приходят в движение под действием сил, модули которых зависят от времени по закону: $F_1 = At$ и $F_2 = 2At$, где A = 1,60 H/c. Нить разрывается в момент времени t = 10,0 с от начала движения, и модуль сил упругости нити в момент разрыва $F_{\rm упр} = 25,0$ H. Если масса первого груза $m_1 = 900$ г, то масса m_2 второго груза равна... г.


60. Игрок в кёрлинг сообщил плоскому камню начальную скорость \vec{v}_0 , после чего камень скользил по горизонтальной поверхности льда без вращения, пока не остановился. Коэффициент трения между камнем и льдом $\mu = 0,0093$. Если путь, пройденный камнем, s = 34 м, то модуль начальной скорости v_0 камня равен ... $\frac{AM}{s}$.

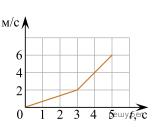
61. Два небольших груза массами $m_1=0,17$ кг и $m_2=0,29$ кг подвешены на концах невесомой нерастяжимой нити, перекинутой через неподвижный гладкий цилиндр. В начальный момент времени оба груза удерживали на одном уровне в состоянии покоя (см. рис.). Через промежуток времени $\Delta t=0,60$ с после того как их отпустили, модуль перемещения $|\Delta \vec{r}|$ грузов друг относительно друга стал равен ... см.



62. На материальную точку O действуют три силы: $\vec{F}_1, \ \vec{F}_2, \ \vec{F}_3$ (см. рис.), лежащие в плоскости рисунка. Модуль равнодействующей сил, приложенных к данной материальной точке, равен:

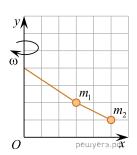
1) 9 H; 2) 4 H; 3) $3\sqrt{2}$ H;

63. Тело движется вдоль оси Ox. График зависимости проекции скорости v_x тела от времени t изображён на рисунке. Если масса тела m=0,4 кг, то в момент времени t=8 с модуль результирующей сил F, действующих на тело, равен:



1) 0,2 H; 2) 0,4 H; 3) 0,5 H; 4) 0,6 H; 5) 0,8 H.

4) 3 H;


5) 1 H.

64. Тело движется вдоль оси Ox. График зависимости проекции скорости v_x тела от времени t изображён на рисунке. Если масса тела m=1 кг, то в момент времени t=4 с модуль v_x , м/с результирующей сил F, действующих на тело, равен:

1) 1 H; 2) 2 H; 3) 3 H; 4) 4 H; 5) 5 H.

65. Вокруг вертикальной оси Oy с постоянной угловой скоростью ω вращаются два небольших груза, подвешенных на лёгкой нерастяжимой нити. Верхний конец нити прикреплён к оси (см. рис.). Если масса первого груза $m_1 = 90$ г, то масса первого груза m_2 равна ... г. *Примечание*. Масштаб сетки вдоль обеих осей одинаков.

66. Шарик массой m=88 г, находящийся на вращающемся гладком горизонтальном диске, соединён лёгкой пружиной с вертикальной осью вращения, проходящей через центр диска (см. рис.). Шарик обращается вокруг этой оси с угловой скоростью $\omega=5,0$ рад/с. Если удлинение пружины $\Delta l=2,0$ см, а расстояние от оси вращения до центра шарика l=20 см, то жёсткость пружины равна ... H/M.

67. Шарик массой m=52 г, находящийся на вращающемся гладком горизонтальном диске, соединён лёгкой пружиной жёсткостью k=25 Н/м с вертикальной осью вращения, проходящей через центр диска (см. рис.). Шарик обращается вокруг этой оси с угловой скоростью $\omega=5,0$ рад/с. Если расстояние от оси вращения до центра шарика l=25 см, то удлинение Δl пружины равно ... мм.